首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2884篇
  免费   4篇
  国内免费   8篇
航空   1316篇
航天技术   987篇
综合类   13篇
航天   580篇
  2021年   20篇
  2019年   21篇
  2018年   61篇
  2017年   36篇
  2016年   41篇
  2015年   15篇
  2014年   63篇
  2013年   101篇
  2012年   60篇
  2011年   120篇
  2010年   85篇
  2009年   145篇
  2008年   156篇
  2007年   76篇
  2006年   81篇
  2005年   75篇
  2004年   70篇
  2003年   101篇
  2002年   52篇
  2001年   97篇
  2000年   62篇
  1999年   74篇
  1998年   78篇
  1997年   72篇
  1996年   72篇
  1995年   91篇
  1994年   90篇
  1993年   43篇
  1992年   50篇
  1991年   19篇
  1990年   25篇
  1989年   53篇
  1988年   37篇
  1987年   24篇
  1986年   38篇
  1985年   87篇
  1984年   72篇
  1983年   45篇
  1982年   71篇
  1981年   71篇
  1980年   20篇
  1979年   13篇
  1978年   33篇
  1977年   13篇
  1975年   25篇
  1974年   18篇
  1973年   20篇
  1972年   16篇
  1969年   12篇
  1967年   12篇
排序方式: 共有2896条查询结果,搜索用时 18 毫秒
1.
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2’s specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2’s equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2’s spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2’s spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite’s angular momentum vector.  相似文献   
2.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   
3.
The simplest version of the method of detecting the single molecular scattering field based on the polarization measurements of the twilight sky background by all-sky cameras has been considered. The method can be used during transitive twilight (with solar zenith angles of 94°–98°), when effective single scattering occurs in the upper stratosphere and lower mesosphere. The long-term measurements conducted using this method in the Moscow region and Apatity make it possible to determine the temperature of these atmospheric layers and estimate the contribution and properties of multiple scattering during the transitive twilight.  相似文献   
4.
5.
Pollock  C.J.  C:son-Brandt  P.  Burch  J.L.  Henderson  M.G.  Jahn  J.-M.  McComas  D.J.  Mende  S.B.  Mitchell  D.G.  Reeves  G.D.  Scime  E.E.  Skoug  R.M.  Thomsen  M.  Valek  P. 《Space Science Reviews》2003,109(1-4):155-182
Energetic Neutral Atom (ENA) imaging has contributed substantially to substorm research. This technique has allowed significant advances in areas such as observation and quantification of injected particle drift as a function of energy, observation of dynamics in the tail that are directly related to the effects of imposed (growth phase) and induced (expansion phase) electric fields on the plasma, the prompt extraction of oxygen from the ionosphere during substorms, the relationship between storms and substorms, and the timing of substorm ENA signatures. We present discussion of the advantages and shortcomings of the ENA technique for studying space plasmas. Although the technique is in its infancy, it is yielding results that enrich our understanding of the substorm process and its effects.  相似文献   
6.
This paper reviews the results of the thermal and static analysis of small motor aerospace technology (SMART) propulsion system, constituted of a microthrusters array realised by MEMS technology on silicon wafers. This system has been studied using FEM (NASTRAN) and the results have been verified by the electro-thermic analogy and the FDM method, using, respectively, SPICE and MATLAB codes. The simulation results demonstrated the feasibility of SMART systems for aerospace applications such as attitude control and deorbiting missions for small satellite station-keeping. A theoretical impulse of 20 mNs has been calculated for the SMART system.  相似文献   
7.
In November 1990, a differential GPS/inertial flight test was conducted to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS with barometric and radar altimeters. Flight test results obtained from postflight data analysis are presented. These results include characteristics of DGPS/inertial error, using a laser tracker as a reference. In addition, data are provided on the magnitude of the differential correlations and vertical channel performance with and without radar altimeter augmentation. Flight test results show one sigma DGPS/inertial horizontal errors of 9 ft and one sigma DGPS inertial vertical errors of 15 ft. Without selective availability effects, the differential corrections are less than 10 ft and are dominated by receiver unique errors over the time period of an approach. Therefore, the one sigma performance of the autonomous GPS (8-ft horizontal and 20-ft vertical) is very similar to the DGPS/inertial performance. Postprocessed results also demonstrate significant improvements in vertical channel performance when GPS/inertial is aided with radar altimeter along with a low-resolution terrain map  相似文献   
8.
The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.  相似文献   
9.
The parametric Rao test for a multichannel adaptive signal detection problem is derived by modeling the disturbance signal as a multichannel autoregressive (AR) process. Interestingly, the parametric Rao test takes a form identical to that of the recently introduced parametric adaptive matched filter (PAMF) detector for space-time adaptive processing (STAP) in airborne surveillance radar systems and other similar applications. The equivalence offers new insights into the performance and implementation of the PAMF detector. Specifically, the Rao/PAMF detector is asymptotically (for large samples) a parametric generalized likelihood ratio test (GLRT), due to an asymptotic equivalence between the Rao test and the GLRT. The asymptotic distribution of the Rao test statistic is obtained in closed form, which follows an exponential distribution under the null hypothesis H 0 and, respectively, a noncentral Chi-squared distribution with two degrees of freedom under the alternative hypothesis H 1. The noncentrality parameter of the noncentral Chi-squared distribution is determined by the output signal-to-interference-plus-noise ratio (SINR) of a temporal whitening filter. Since the asymptotic distribution under H 0 is independent of the unknown parameters, the Rao/PAMF asymptotically achieves constant false alarm rate (CFAR). Numerical results show that these results are accurate in predicting the performance of the parametric Rao/PAMF detector even with moderate data support.  相似文献   
10.
A problem of determining a shape of the airfoil being streamlined by a potential incompressible inviscid flow is solved by the successive approximation method using a specified chord velocity diagram. It is shown that a closed airfoil that possesses a specified chord velocity diagram can be constructed with a sufficient accuracy; if the chord diagram is unsuccessfully specified, the closed airfoil may prove to be not univalent, that is, physically unrealizable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号